Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2024, Volume 10, Issue 2, Pages 25–36
DOI: https://doi.org/10.15826/umj.2024.2.003
(Mi umj231)
 

Reducing graphs by lifting rotations of edges to splittable graphs

Vitaly A. Baransky, Valentin V. Zuev, Tatiana A. Senchonok

Ural Federal University named after the First President of Russia B. N. Yeltsin
References:
Abstract: A graph $G$ is splittable if its set of vertices can be represented as the union of a clique and a coclique. We will call a graph $H$ a splittable ancestor of a graph $G$ if the graph $G$ is reducible to the graph $H$ using some sequential lifting rotations of edges and $H$ is a splittable graph. A splittable $r$-ancestor of $G$ we will call its splittable ancestor whose Durfey rank is $r$. Let us set $s = ({1}/{2}) (\mathrm{sum}\,\mathrm{tl}(\lambda) - \mathrm{sum}\,\mathrm{hd}(\lambda))$, where $\mathrm{hd}(\lambda)$ and $\mathrm{tl}(\lambda)$ are the head and the tail of a partition $\lambda$. The main goal of this work is to prove that any graph $G$ of Durfey rank $r$ is reducible by $s$ successive lifting rotations of edges to a splittable $r$-ancestor $H$ and $s$ is the smallest non-negative integer with this property. Note that the degree partition $\mathrm{dpt}(G)$ of the graph $G$ can be obtained from the degree partition $\mathrm{dpt}(H)$ of the splittable $r$-ancestor $H$ using a sequence of $s$ elementary transformations of the first type. The obtained results provide new opportunities for investigating the set of all realizations of a given graphical partition using splittable graphs.
Keywords: Integer partition, Graphical partition, Degree partition, Splittable graph, Rotation of an edge
Bibliographic databases:
Document Type: Article
Language: English
Citation: Vitaly A. Baransky, Valentin V. Zuev, Tatiana A. Senchonok, “Reducing graphs by lifting rotations of edges to splittable graphs”, Ural Math. J., 10:2 (2024), 25–36
Citation in format AMSBIB
\Bibitem{BarZueSen24}
\by Vitaly~A.~Baransky, Valentin~V.~Zuev, Tatiana~A.~Senchonok
\paper Reducing graphs by lifting rotations of edges to splittable graphs
\jour Ural Math. J.
\yr 2024
\vol 10
\issue 2
\pages 25--36
\mathnet{http://mi.mathnet.ru/umj231}
\crossref{https://doi.org/10.15826/umj.2024.2.003}
\elib{https://elibrary.ru/item.asp?id=79561206}
\edn{https://elibrary.ru/KNDKPQ}
Linking options:
  • https://www.mathnet.ru/eng/umj231
  • https://www.mathnet.ru/eng/umj/v10/i2/p25
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025