Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2024, Volume 10, Issue 2, Pages 81–91
DOI: https://doi.org/10.15826/umj.2024.2.008
(Mi umj236)
 

Tauberian theorem for general matrix summability method

Bidu Bhusan Jenaa, Priyadarsini Paridab, Susanta Kumar Paikrayc

a Sri Sri University
b Department of Mathematics, Kuntala Kumari Sabat Women’s College
c Veer Surendra Sai University of Technology
References:
Abstract: In this paper, we prove certain Littlewood–Tauberian theorems for general matrix summability method by imposing the Tauberian conditions such as slow oscillation of usual as well as matrix generated sequence, and the De la Vallée Poussin means of real sequences. Moreover, we demonstrate $(\bar{N},p_{n})$ and $(C,1)$ — summability methods as the generalizations of our proposed general matrix method and establish an equivalence relation connecting them. Finally, we draw several remarks in view of the generalizations of some existing well-known results based on our results.
Keywords: Matrix summability, Weighted mean, Cesàro mean, Slow oscillation, Tauberian theorem
Bibliographic databases:
Document Type: Article
Language: English
Citation: Bidu Bhusan Jena, Priyadarsini Parida, Susanta Kumar Paikray, “Tauberian theorem for general matrix summability method”, Ural Math. J., 10:2 (2024), 81–91
Citation in format AMSBIB
\Bibitem{JenParPai24}
\by Bidu~Bhusan~Jena, Priyadarsini~Parida, Susanta~Kumar~Paikray
\paper Tauberian theorem for general matrix summability method
\jour Ural Math. J.
\yr 2024
\vol 10
\issue 2
\pages 81--91
\mathnet{http://mi.mathnet.ru/umj236}
\crossref{https://doi.org/10.15826/umj.2024.2.008}
\elib{https://elibrary.ru/item.asp?id=79561211}
\edn{https://elibrary.ru/UPHLWR}
Linking options:
  • https://www.mathnet.ru/eng/umj236
  • https://www.mathnet.ru/eng/umj/v10/i2/p81
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025