Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2024, Volume 10, Issue 2, Pages 92–106
DOI: https://doi.org/10.15826/umj.2024.2.009
(Mi umj237)
 

Trajectories of dynamic equilibrium and replicator dynamics in coordination games

Nikolay A. Krasovskiia, Alexander M. Tarasyevab

a Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Ural Federal University
References:
Abstract: The paper analyzes average integral payoff indices for trajectories of the dynamic equilibrium and replicator dynamics in bimatrix coordination games. In such games, players receive large payoffs when choosing the same type of behavior. A special feature of a $2\times2$ coordination game is the presence of three static Nash equilibria. In the dynamic formulation, the trajectories of coordination games are estimated by the average integral payoffs for a wide range of models arising in economics and biology. In optimal control problems and dynamic games, average integral payoffs are used to synthesize guaranteed strategies, which are involved, among other things, in the constructions of the dynamic Nash equilibrium. In addition, average integral payoffs are a natural tool for assessing the quality of trajectories of replicator dynamics. In the paper, we compare values of average integral indices for trajectories of replicator dynamics and trajectories generated by guaranteed strategies in constructing the dynamic Nash equilibrium. An analysis is provided for trajectories of mixed dynamics when the first player plays a guaranteed strategy, and the behavior of replicator dynamics guides the second player.
Keywords: Dynamic bimatrix games, Coordination games, Average integral payoffs, Guaranteed strategies, Replicator dynamics, Dynamic Nash equilibrium
Bibliographic databases:
Document Type: Article
Language: English
Citation: Nikolay A. Krasovskii, Alexander M. Tarasyev, “Trajectories of dynamic equilibrium and replicator dynamics in coordination games”, Ural Math. J., 10:2 (2024), 92–106
Citation in format AMSBIB
\Bibitem{KraTar24}
\by Nikolay~A.~Krasovskii, Alexander~M.~Tarasyev
\paper Trajectories of dynamic equilibrium and replicator dynamics in coordination games
\jour Ural Math. J.
\yr 2024
\vol 10
\issue 2
\pages 92--106
\mathnet{http://mi.mathnet.ru/umj237}
\crossref{https://doi.org/10.15826/umj.2024.2.009}
\elib{https://elibrary.ru/item.asp?id=79561212}
\edn{https://elibrary.ru/WVLJRR}
Linking options:
  • https://www.mathnet.ru/eng/umj237
  • https://www.mathnet.ru/eng/umj/v10/i2/p92
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025