Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2024, Volume 10, Issue 2, Pages 121–130
DOI: https://doi.org/10.15826/umj.2024.2.011
(Mi umj239)
 

On widths of some classes of analytic functions in a circle

Mirgand Sh. Shabozova, Muqim S. Saidusajnovb

a Tajik National University
b University of Central Asia
References:
Abstract: We calculate exact values of some $n$-widths of the class $W_{q}^{(r)}(\Phi),$ $r\in\mathbb{Z}_{+},$ in the Banach spaces $\mathscr{L}_{q,\gamma}$ and $B_{q,\gamma},$ $1\leq q\leq\infty,$ with a weight $\gamma$. These classes consist of functions $f$ analytic in the unit circle, their $r$th order derivatives $f^{(r)}$ belong to the Hardy space $H_{q},$ $1\leq q\leq\infty,$ and the averaged moduli of smoothness of boundary values of $f^{(r)}$ are bounded by a given majorant $\Phi$ at the system of points $\{\pi/(2k)\}_{k\in\mathbb{N}}$; more precisely,
$$ \frac{k}{\pi-2}\int_{0}^{\pi/(2k)}\omega_{2}(f^{(r)},2t)_{H_{q,\rho}}dt\leq \Phi\left(\frac{\pi}{2k}\right) $$
for all $k\in\mathbb{N}$, $k>r.$
Keywords: Modulus of smoothness, The best approximation, $n$-widths, The best linear method of approximation
Bibliographic databases:
Document Type: Article
Language: English
Citation: Mirgand Sh. Shabozov, Muqim S. Saidusajnov, “On widths of some classes of analytic functions in a circle”, Ural Math. J., 10:2 (2024), 121–130
Citation in format AMSBIB
\Bibitem{ShaSai24}
\by Mirgand~Sh.~Shabozov, Muqim~S.~Saidusajnov
\paper On widths of some classes of analytic functions in a circle
\jour Ural Math. J.
\yr 2024
\vol 10
\issue 2
\pages 121--130
\mathnet{http://mi.mathnet.ru/umj239}
\crossref{https://doi.org/10.15826/umj.2024.2.011}
\elib{https://elibrary.ru/item.asp?id=79561214}
\edn{https://elibrary.ru/OONVWU}
Linking options:
  • https://www.mathnet.ru/eng/umj239
  • https://www.mathnet.ru/eng/umj/v10/i2/p121
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025