Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2018, Volume 4, Issue 1, Pages 24–42
DOI: https://doi.org/10.15826/umj.2018.1.003
(Mi umj53)
 

This article is cited in 2 scientific papers (total in 2 papers)

Evaluation of some non-elementary integrals involving sine, cosine, exponential and logarithmic integrals: part I

Victor Nijimbere

School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada
Full-text PDF (224 kB) Citations (2)
References:
Abstract: The non-elementary integrals $\text{Si}_{\beta,\alpha}=\int [\sin{(\lambda x^\beta)}/(\lambda x^\alpha)] dx,$ $\beta\ge1,$ $\alpha\le\beta+1$ and $\text{Ci}_{\beta,\alpha}=\int [\cos{(\lambda x^\beta)}/(\lambda x^\alpha)] dx,$ $\beta\ge1,$ $\alpha\le2\beta+1$, where $\{\beta,\alpha\}\in\mathbb{R}$, are evaluated in terms of the hypergeometric functions $_{1}F_2$ and $_{2}F_3$, and their asymptotic expressions for $|x|\gg1$ are also derived. The integrals of the form $\int [\sin^n{(\lambda x^\beta)}/(\lambda x^\alpha)] dx$ and $\int [\cos^n{(\lambda x^\beta)}/(\lambda x^\alpha)] dx$, where $n$ is a positive integer, are expressed in terms $\text{Si}_{\beta,\alpha}$ and $\text{Ci}_{\beta,\alpha}$, and then evaluated. $\text{Si}_{\beta,\alpha}$ and $\text{Ci}_{\beta,\alpha}$ are also evaluated in terms of the hypergeometric function $_{2}F_2$. And so, the hypergeometric functions, $_{1}F_2$ and $_{2}F_3$, are expressed in terms of $_{2}F_2$. The exponential integral $\text{Ei}_{\beta,\alpha}=\int (e^{\lambda x^\beta}/x^\alpha) dx$ where $\beta\ge1$ and $\alpha\le\beta+1$ and the logarithmic integral $\text{Li}=\int_{\mu}^{x} dt/\ln{t}$, $\mu>1$, are also expressed in terms of $_{2}F_2$, and their asymptotic expressions are investigated. For instance, it is found that for $x\gg2$, $\text{Li}\sim {x}/{\ln{x}}+\ln{\left({\ln{x}}/{\ln{2}}\right)}-2- \ln{2}\hspace{.075cm} _{2}F_{2}(1,1;2,2;\ln{2})$, where the term $\ln{\left({\ln{x}}/{\ln{2}}\right)}-2- \ln{2}\hspace{.075cm} _{2}F_{2}(1,1;2,2;\ln{2})$ is added to the known expression in mathematical literature $\text{Li}\sim {x}/{\ln{x}}$. The method used in this paper consists of expanding the integrand as a Taylor and integrating the series term by term, and can be used to evaluate the other cases which are not considered here. This work is motivated by the applications of sine, cosine exponential and logarithmic integrals in Science and Engineering, and some applications are given.
Keywords: Non-elementary integrals, Sine integral, Cosine integral, Exponential integral, Logarithmic integral, Hyperbolic sine integral, Hyperbolic cosine integral, Hypergeometric functions, Asymptotic evaluation, Fundamental theorem of calculus.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Victor Nijimbere, “Evaluation of some non-elementary integrals involving sine, cosine, exponential and logarithmic integrals: part I”, Ural Math. J., 4:1 (2018), 24–42
Citation in format AMSBIB
\Bibitem{Nij18}
\by Victor~Nijimbere
\paper Evaluation of some non-elementary integrals involving sine, cosine, exponential and logarithmic integrals: part I
\jour Ural Math. J.
\yr 2018
\vol 4
\issue 1
\pages 24--42
\mathnet{http://mi.mathnet.ru/umj53}
\crossref{https://doi.org/10.15826/umj.2018.1.003}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=MR3848662}
\elib{https://elibrary.ru/item.asp?id=35339280}
Linking options:
  • https://www.mathnet.ru/eng/umj53
  • https://www.mathnet.ru/eng/umj/v4/i1/p24
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025