|
|
Proceedings of the Yerevan State University, series Physical and Mathematical Sciences, 2019, Volume 53, Issue 3, Pages 163–169
(Mi uzeru624)
|
|
|
|
Mathematics
Degenerate first order differential-operator equations
L. P. Tepoyan Yerevan State University
Abstract:
We consider boundary value problem for degenerate first order differential-operator equation $Lu\equiv t^{\alpha}u'-Pu=f, ~u(0)-\mu u(b)=0,$ where $t\in(0,b), \alpha\geq 0$, $P:H\rightarrow H$ is linear operator in separable Hilbert space $H, f\in L_{2,\beta}((0,b),H),~\mu\in\mathbb{C}$. We prove that under some conditions on the operator $P$ and number $\mu$ boundary value problem has unique generalized solution $u\in L_{2,\beta}((0,b),H)$ when $2\alpha+\beta<1$, $\beta\geq 0$ and for any $f\in L_{2,\beta}((0,b),H)$.
Keywords:
linear boundary value problems, spectral theory of linear operators.
Received: 01.10.2019 Revised: 10.10.2019 Accepted: 18.11.2019
Citation:
L. P. Tepoyan, “Degenerate first order differential-operator equations”, Proceedings of the YSU, Physical and Mathematical Sciences, 53:3 (2019), 163–169
Linking options:
https://www.mathnet.ru/eng/uzeru624 https://www.mathnet.ru/eng/uzeru/v53/i3/p163
|
| Statistics & downloads: |
| Abstract page: | 150 | | Full-text PDF : | 58 | | References: | 41 |
|