|
|
Proceedings of the Yerevan State University, series Physical and Mathematical Sciences, 1992, Issue 1, Pages 3–14
(Mi uzeru756)
|
|
|
|
Mathematics
Abelian and Tauberian theorems for the convolution type transformations
A.-R. Isam Yerevan State University
Abstract:
In this paper we have receved analogies of Abelian and Tauberian theorems for the generalization Laplace transformations, namely the following transformation: $$f(s)=\int\limits^{\infty}_0 \omega(st, \gamma)d\alpha(t),$$ where the sequence is constructed $\gamma=\{\gamma_u\},$ $$\gamma_0=0\leq\gamma_1\leq\gamma_2\leq\ldots \leq\ldots,~\sum{1/ \gamma_u }=\sum{1/ \gamma_u^2}\leq\infty,$$ the function $\omega(t, \gamma)$ summarized the nucleus of Laplace transformation.
Received: 17.12.1990 Accepted: 28.12.1992
Citation:
A.-R. Isam, “Abelian and Tauberian theorems for the convolution type transformations”, Proceedings of the YSU, Physical and Mathematical Sciences, 1992, no. 1, 3–14
Linking options:
https://www.mathnet.ru/eng/uzeru756 https://www.mathnet.ru/eng/uzeru/y1992/i1/p3
|
| Statistics & downloads: |
| Abstract page: | 106 | | Full-text PDF : | 39 | | References: | 39 |
|