Proceedings of the Yerevan State University, series Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the YSU, Physical and Mathematical Sciences:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Proceedings of the Yerevan State University, series Physical and Mathematical Sciences, 1987, Issue 1, Pages 18–26 (Mi uzeru936)  

Mathematics

The description of Dirac operator spectra

P. E. Melik-Adamian

Yerevan State University
References:
Abstract: In the present paper the investigations of the parer [1] on one-dimensional Dirac system are generalized for the infinite-dimensional case. The description of spectra of selfadjoint extensions $D_k$ of the operator $D_0$ is given depending on the properties of boundary projectors $P_k$ which determine such extensions.
Received: 03.09.1986
Accepted: 15.03.1987
Document Type: Article
UDC: 517.98
Language: Russian
Citation: P. E. Melik-Adamian, “The description of Dirac operator spectra”, Proceedings of the YSU, Physical and Mathematical Sciences, 1987, no. 1, 18–26
Citation in format AMSBIB
\Bibitem{Mel87}
\by P.~E.~Melik-Adamian
\paper The description of Dirac operator spectra
\jour Proceedings of the YSU, Physical and Mathematical Sciences
\yr 1987
\issue 1
\pages 18--26
\mathnet{http://mi.mathnet.ru/uzeru936}
Linking options:
  • https://www.mathnet.ru/eng/uzeru936
  • https://www.mathnet.ru/eng/uzeru/y1987/i1/p18
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Proceedings of the Yerevan State University, series Physical and Mathematical Sciences
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025