|
|
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2011, Volume 153, Book 3, Pages 81–86
(Mi uzku1057)
|
|
|
|
Bol transformation quasigroups and three-webs defined by them
G. A. Tolstikhina Tver State University
Abstract:
The notions of a local smooth quasigroup and a quasigroup of transformations are natural generalizations of the notions of the Lie group and the Lie transformation group. We define the quasigroup of transformations as an action $f$ of the local smooth $q$-dimensional quasigroup $Q(*)$ on the smooth $p$-dimensional manifold $Y$ $(1\leq p\leq q)$ given by a smooth function
$$
f\colon Q\times Y\to Y,\quad z=f(a,y),\quad a\in Q,\quad y,z\in Y.
$$
On the other hand, the equation $z=f(a,y)$ defines the three-web $QW(p,q,q)$ formed by a foliation of $p$-dimensional leaves $a=\mathrm{const}$ and two foliations of $q$-dimensional leaves $y=\mathrm{const}$ and $z=f(a,y)=\mathrm{const}$ on the manifold $Q\times Y$. Thus, we can use the three-web theory methods to study different classes of smooth local quasigroups of transformations. In the present paper, we investigate Bol quasigroups of transformations characterized by some condition on the function $f$.
Keywords:
quasigroup, quasigroup of transformations, Bol quasigroup, three-web, Bol three-web, three-web configuration, core of Bol three-web, locally symmetric space structure.
Received: 19.06.2011
Citation:
G. A. Tolstikhina, “Bol transformation quasigroups and three-webs defined by them”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 153, no. 3, Kazan University, Kazan, 2011, 81–86
Linking options:
https://www.mathnet.ru/eng/uzku1057 https://www.mathnet.ru/eng/uzku/v153/i3/p81
|
| Statistics & downloads: |
| Abstract page: | 405 | | Full-text PDF : | 176 | | References: | 74 |
|