Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2014, Volume 156, Book 3, Pages 55–65 (Mi uzku1265)  

This article is cited in 1 scientific paper (total in 1 paper)

Circuit codes and the Snake-in-the-Box Problem

A. A. Evdokimovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (769 kB) Citations (1)
References:
Abstract: The article is based on the materials of the plenary talk “Circuit Codes and the Snake-in-the-Box Problem: Modern State, Generalizations, and Applications” presented at the XVII International Conference “Problems of Theoretical Cybernetics”, Kazan Federal University, June, 2014. In this paper we discuss the current state of research on this well-known combinatorial problem and its generalizations. A survey on the lower and upper bounds for the maximal length of a snake and a cycle in the $n$-dimensional Boolean cube is given. We compare the known methods for construction of snakes and the upper bounds for their lengths. A table of strict values of the maximal lengths for $n<9$ and the bounds for $n=10,11$ and $12$ is presented. A simple construction for a snake of length $\mathrm{const}\cdot2^n$ with $\mathrm{const}>0.26$ is given. We analyze the properties of the constructions which influence the value of the constant. A survey of the results on circuit codes (that are generalizations of snakes) is given. Several unsolved tasks are considered.
Keywords: snake-in-the-box, $n$-dimensional cube, combinatorics, symbolic sequences, circuit codes, upper and lower bounds.
Received: 06.08.2014
Document Type: Article
UDC: 519.1+519.7
Language: Russian
Citation: A. A. Evdokimov, “Circuit codes and the Snake-in-the-Box Problem”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 156, no. 3, Kazan University, Kazan, 2014, 55–65
Citation in format AMSBIB
\Bibitem{Evd14}
\by A.~A.~Evdokimov
\paper Circuit codes and the Snake-in-the-Box Problem
\serial Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
\yr 2014
\vol 156
\issue 3
\pages 55--65
\publ Kazan University
\publaddr Kazan
\mathnet{http://mi.mathnet.ru/uzku1265}
Linking options:
  • https://www.mathnet.ru/eng/uzku1265
  • https://www.mathnet.ru/eng/uzku/v156/i3/p55
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
    Statistics & downloads:
    Abstract page:575
    Full-text PDF :282
    References:90
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025