Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Chelyabinsk. Gos. Univ.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, 2015, Issue 17, Pages 26–40 (Mi vchgu4)  

Geometry and Topology

Quantum invariants of 3-manifolds arising from non-semisimple categories

M. De Renziabcde

a Pierre and Marie Curie University, Paris, France
b Paris Diderot University, Paris, France
c Institute of Mathematics of Jussieu (UMR 7586), Paris, France
d Universit'e Sorbonne Paris Cit'e, Paris, France
e French National Centre for Scientific Research, Paris, France
References:
Abstract: This survey article covers some of the results contained in the papers by Costantino, Geer and Patureau and by Blanchet, Costantino, Geer and Patureau. In the first one the authors construct two families of Reshetikhin–Turaev-type invariants of 3-manifolds, ${\mathrm N}_r$ and ${\mathrm N}^0_r$, using non-semisimple categories of representations of a quantum version of ${\mathfrak{sl}_2}$ at a $2r$-th root of unity with $r \geq 2$. The secondary invariants ${\mathrm N}^0_r$ conjecturally extend the original Reshetikhin–Turaev quantum ${\mathfrak{sl}_2}$ invariants. The authors also provide a machinery to produce invariants out of more general ribbon categories which can lack the semisimplicity condition. In the second paper a renormalized version of ${\mathrm N}_r$ for $r \neq 0 \; (\mathrm{mod} \; 4)$ is extended to a TQFT, and connections with classical invariants such as the Alexander polynomial and the Reidemeister torsion are found. In particular, it is shown that the use of richer categories pays off, as these non-semisimple invariants are strictly finer than the original semisimple ones: indeed they can be used to recover the classification of lens spaces, which Reshetikhin–Turaev invariants could not always distinguish.
Keywords: $q$-binomial formula, dilogarithm identity.
Funding agency Grant number
Fondation Sciences Mathématiques de Paris
The author aknowledge support from Fondation Sciences Mathématiques de Paris
Document Type: Article
UDC: 515.163
BBC: B151.5
Language: English
Citation: M. De Renzi, “Quantum invariants of 3-manifolds arising from non-semisimple categories”, Vestnik Chelyabinsk. Gos. Univ., 2015, no. 17, 26–40
Citation in format AMSBIB
\Bibitem{De 15}
\by M.~De Renzi
\paper Quantum invariants of 3-manifolds arising from non-semisimple categories
\jour Vestnik Chelyabinsk. Gos. Univ.
\yr 2015
\issue 17
\pages 26--40
\mathnet{http://mi.mathnet.ru/vchgu4}
Linking options:
  • https://www.mathnet.ru/eng/vchgu4
  • https://www.mathnet.ru/eng/vchgu/y2015/i17/p26
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
    Statistics & downloads:
    Abstract page:347
    Full-text PDF :158
    References:75
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025