|
|
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, 2009, Issue 11, Pages 5–11
(Mi vchgu74)
|
|
|
|
Mathematical and functional analysis
Asymptotics of two-dimensional integrals depending singularity on a small parameter
A. A. Ershov Chelyabinsk State University
Abstract:
The asymptotics is constructed for integrals of form
$\iint\limits_w \frac{dxdy}{\epsilon^2+\chi(x,y)}$ where $\omega$ is some vicinity of a critical point $(0,0)$ in which function $\chi(x,y)$ is equal to zero. It is considered the case in which function $\chi(x,y)$ addresses in a zero on two crossed curves and has a special appearance.
Citation:
A. A. Ershov, “Asymptotics of two-dimensional integrals depending singularity on a small parameter”, Vestnik Chelyabinsk. Gos. Univ., 2009, no. 11, 5–11
Linking options:
https://www.mathnet.ru/eng/vchgu74 https://www.mathnet.ru/eng/vchgu/y2009/i11/p5
|
| Statistics & downloads: |
| Abstract page: | 163 | | Full-text PDF : | 62 | | References: | 57 |
|