Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2013, Volume 15, Number 4, Pages 44–47 (Mi vmj483)  

Extremal values of the volume of $3$-dimensional parallelepipeds with a given intrinsic diameter

N. V. Rasskazova

Rubtsovsk Industrial Intitute, Branch of Altai State Technical University, Rubtsovsk, Russia
References:
Abstract: It is proved that a parallelepiped with relation $a:b:c=1:1:\sqrt2$ for its edge lengths has maximal volume among all rectangular parallelepipeds with a given intrinsic diameter.
Key words: rectangular parallelepiped, geodesic (intrinsic) diameter, volume.
Received: 18.10.2012
Document Type: Article
UDC: 514.17
Language: Russian
Citation: N. V. Rasskazova, “Extremal values of the volume of $3$-dimensional parallelepipeds with a given intrinsic diameter”, Vladikavkaz. Mat. Zh., 15:4 (2013), 44–47
Citation in format AMSBIB
\Bibitem{Ras13}
\by N.~V.~Rasskazova
\paper Extremal values of the volume of $3$-dimensional parallelepipeds with a~given intrinsic diameter
\jour Vladikavkaz. Mat. Zh.
\yr 2013
\vol 15
\issue 4
\pages 44--47
\mathnet{http://mi.mathnet.ru/vmj483}
Linking options:
  • https://www.mathnet.ru/eng/vmj483
  • https://www.mathnet.ru/eng/vmj/v15/i4/p44
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025