Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2018, Volume 20, Number 2, Pages 95–108
DOI: https://doi.org/10.23671/VNC.2018.2.14726
(Mi vmj658)
 

On a characterisation of the space of Riesz potential of functions in Banach spaces with some à priori properties

S. G. Samkoa, S. M. Umarkhadzhievbc

a Universidade do Algarve Campus de Gambelas, Campus de Gambelas, 8005-139 Faro, Portugal
b Kh. Ibragimov Complex Institute of the Russian Academy of Sciences
c Academy of Sciences of Chechen Republic
References:
Abstract: We consider the problem of describing the space $I^\alpha(X)$ of functions representable by the Riesz potential ${I}^\alpha \varphi$ with density $\varphi$ in the given space $X.$ It is assumed that $X\subset \Phi'$, where $\Phi'$ is the space of distributions over the Lizorkin test function space $\Phi$, invariant with respect to Riesz integration, and the range $I^\alpha(X)$ is understood in the sense of distributions. In this general setting, we study the question under what assumptions on the space $X$ the inclusion of the element $f$ in to the range $I^\alpha (X) $ is equivalent to the convergence of the truncated hypersingular integrals $\mathbb D_\varepsilon^\alpha f$ in the space $X.$ For this purpose, this question is first investigated in the context of the topology of the space $ \Phi. $ Namely, for any linear subset $X$ in $\Phi'$ it is shown that the inclusion of $f$ into the range $I^\alpha (X)$ is equivalent to the convergence of truncated hypersingular integrals on the set $X$ in the topology of the space $\Phi'$. If $X$ is a Banach space, the passage from the inclusion into the range to the convergence of truncated hypersingular integrals in the norm is proved up to an additive polynomial term under the assumption that some special convolution is an identity approximation in the space $X$. It is known that the latter holds for many Banach function spaces and is valid for function spaces $X$ where the maximal operator is bounded. The inverse passage is proved for the Banach function space $X$ enjoying the property that the associated space $X'$ includes the Lizorkin test function space.
Key words: Riesz potential, space of Riesz potentials, hypersingular integral, distributions, grand Lebesgue space, Lizorkin test functions space, identity approximation, Orlicz space, variable order Lebesgue space.
Funding agency Grant number
Russian Foundation for Basic Research 17-301-50023_мол_нр
18-01-00094_а
Received: 29.03.2018
Bibliographic databases:
Document Type: Article
UDC: 517.982+517.983
Language: Russian
Citation: S. G. Samko, S. M. Umarkhadzhiev, “On a characterisation of the space of Riesz potential of functions in Banach spaces with some à priori properties”, Vladikavkaz. Mat. Zh., 20:2 (2018), 95–108
Citation in format AMSBIB
\Bibitem{SamUma18}
\by S.~G.~Samko, S.~M.~Umarkhadzhiev
\paper On a characterisation of the space of Riesz potential of functions in Banach spaces with some \`{a} priori properties
\jour Vladikavkaz. Mat. Zh.
\yr 2018
\vol 20
\issue 2
\pages 95--108
\mathnet{http://mi.mathnet.ru/vmj658}
\crossref{https://doi.org/10.23671/VNC.2018.2.14726}
\elib{https://elibrary.ru/item.asp?id=35258722}
Linking options:
  • https://www.mathnet.ru/eng/vmj658
  • https://www.mathnet.ru/eng/vmj/v20/i2/p95
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025