Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2023, Volume 25, Number 1, Pages 33–47
DOI: https://doi.org/10.46698/s7895-5601-5395-f
(Mi vmj846)
 

Approximate solution of the nonlinear Fredholm integral equation of the second kind

H. Guebbaia, M. Ghiata, W. Merchelabc, S. Segnia, E. V. Stepanenkod

a Laboratoire des Mathématiques Appliquées et Modélisation, University 8 Mai 1945, BP. 401, Guelma 24000, Algeria
b Derzhavin Tambov State University, 33 Internatsionalnaya St., Tambov 392000, Russia
c Université Mustapha Stambouli Mascara, BP 305, Mascara 29000, Algeria
d Tambov State Technical University, 106 Sovetskaya St., Tambov 392000, Russia
References:
Abstract: This article deals with the numerical treatment of nonlinear Fredholm integral equations of the second kind. The equation treated in this paper has particular kernel, in sense that it is composed of the product between two parts: a weakly singular part not depending on the solution and a nonlinear Fréchet differentiable part depending on our solution. The approximate solution proposed in this work is defined as an iterative sequence of Newton–Kantorovich type. To construct this solution, we use three numerical methods: the Newton–Kantorovich method to linearize our problem, the method of regularization with convolution and Fourier series expansion. It needs to obtain a finite rank sequence and “Hat functions projection” to deal with nonlinear term in the Newton–Kantorovich construction. We prove that this particular Newton-like sequence converges perfectly to the exact solution. In addition, we construct some numerical example to demonstrate its effectiveness in practice. The obtained numerical results confirm the accuracy of the theoretical results.
Key words: fredholm integral equation, nonlinear equation, Newton-like methods, Fréchet derivative, weakly singularity.
Received: 09.01.2022
Bibliographic databases:
Document Type: Article
UDC: 519.642
Language: Russian
Citation: H. Guebbai, M. Ghiat, W. Merchela, S. Segni, E. V. Stepanenko, “Approximate solution of the nonlinear Fredholm integral equation of the second kind”, Vladikavkaz. Mat. Zh., 25:1 (2023), 33–47
Citation in format AMSBIB
\Bibitem{GueGhiMer23}
\by H.~Guebbai, M.~Ghiat, W.~Merchela, S.~Segni, E.~V.~Stepanenko
\paper Approximate solution of the nonlinear Fredholm integral equation of the second kind
\jour Vladikavkaz. Mat. Zh.
\yr 2023
\vol 25
\issue 1
\pages 33--47
\mathnet{http://mi.mathnet.ru/vmj846}
\crossref{https://doi.org/10.46698/s7895-5601-5395-f}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4567603}
Linking options:
  • https://www.mathnet.ru/eng/vmj846
  • https://www.mathnet.ru/eng/vmj/v25/i1/p33
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:228
    Full-text PDF :111
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025