Numerical methods and programming
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Num. Meth. Prog.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Numerical methods and programming, 2022, Volume 23, Issue 1, Pages 46–59
DOI: https://doi.org/10.26089/NumMet.v23r104
(Mi vmp1049)
 

Methods and algorithms of computational mathematics and their applications

Multigrid methods with skew-Hermitian based smoothers for the convection–diffusion problem with dominant convection

T. S. Martynova, G. V. Muratova, I. N. Shabas, V. V. Bavin

Southern Federal University, Vorovich Institute for Mathematics, Mechanics and Computer Science, Rostov-on-Don, Russia
Abstract: The convection–diffusion equation with dominant convection is considered on a uniform grid of central difference scheme. The multigrid method is used for solving the strongly nonsymmetric systems of linear algebraic equations with positive definite coefficient matrices. Two-step skew-Hermitian iterative methods are utilized for the first time as a smoothing procedure. It is demonstrated that using the proper smoothers enables to improve the convergence of the multigrid method. The robustness of the smoothers with respect to variation of the Peclet number is shown by local Fourier analysis and numerical experiments.
Keywords: convection-diffusion equation, multigrid methods, smoothing procedure, product-type skew-Hermitian triangular splitting, local Fourier analysis, convergence.
Received: 19.11.2021
Accepted: 01.02.2022
Document Type: Article
Language: English
Citation: T. S. Martynova, G. V. Muratova, I. N. Shabas, V. V. Bavin, “Multigrid methods with skew-Hermitian based smoothers for the convection–diffusion problem with dominant convection”, Num. Meth. Prog., 23:1 (2022), 46–59
Citation in format AMSBIB
\Bibitem{MarMurSha22}
\by T.~S.~Martynova, G.~V.~Muratova, I.~N.~Shabas, V.~V.~Bavin
\paper Multigrid methods with skew-Hermitian based smoothers for the convection--diffusion problem with dominant convection
\jour Num. Meth. Prog.
\yr 2022
\vol 23
\issue 1
\pages 46--59
\mathnet{http://mi.mathnet.ru/vmp1049}
\crossref{https://doi.org/10.26089/NumMet.v23r104}
Linking options:
  • https://www.mathnet.ru/eng/vmp1049
  • https://www.mathnet.ru/eng/vmp/v23/i1/p46
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Numerical methods and programming
    Statistics & downloads:
    Abstract page:120
    Full-text PDF :71
    References:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025