Numerical methods and programming
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Num. Meth. Prog.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Numerical methods and programming, 2013, Volume 14, Issue 4, Pages 468–482 (Mi vmp137)  

Вычислительные методы и приложения

Using Lagrange principle for solving linear ill-posed problems with a priori information

Y. Zhang, D. V. Luk'yanenko, A. G. Yagola

M. V. Lomonosov Moscow State University, Faculty of Physics
Abstract: Linear ill-posed problems with a priori information on the exact solution are considered. Using the method of extending compacts, the Lagrange principle and the optimal recovery theory, we propose a method for constructing an optimal regularization algorithm for solving linear ill-posed problems with sourcewise representable solutions and a method of calculating the corresponding optimal worst a posteriori error estimate of the proposed method. A numerical simulation of a heat equation is also considered. This work was partially supported by the Russian Foundation for Basic Research (projects 11-01-00040, 12-01-00524 and 12-01-91153-NFSCa).
Keywords: ill-posed problems; regularization algorithms; optimal recovery; Lagrange principle; regularization parameter.
Received: 25.09.2013
Document Type: Article
UDC: 519.6
Language: Russian
Citation: Y. Zhang, D. V. Luk'yanenko, A. G. Yagola, “Using Lagrange principle for solving linear ill-posed problems with a priori information”, Num. Meth. Prog., 14:4 (2013), 468–482
Citation in format AMSBIB
\Bibitem{ZhaLukYag13}
\by Y.~Zhang, D.~V.~Luk'yanenko, A.~G.~Yagola
\paper Using Lagrange principle for solving linear ill-posed problems with a priori information
\jour Num. Meth. Prog.
\yr 2013
\vol 14
\issue 4
\pages 468--482
\mathnet{http://mi.mathnet.ru/vmp137}
Linking options:
  • https://www.mathnet.ru/eng/vmp137
  • https://www.mathnet.ru/eng/vmp/v14/i4/p468
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Numerical methods and programming
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025