Numerical methods and programming
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Num. Meth. Prog.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Numerical methods and programming, 2003, Volume 4, Issue 1, Pages 258–277 (Mi vmp722)  

Nonuniqueness of shockwave structures in real gases: the Mach and/or regular reflection

G. A. Tarnavskii

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Abstract: A number of nonuniqueness problems for the shockwave structures arising in high-speed flows at interaction of shocks with the Mach and/or regular reflection are considered. The influence of real gas properties (the effective specific-heat ratio model) on variation in the position of bifurcation points in parameter space (the boundaries of a region where a double solution may exist) is studied.
Keywords: shockwave structures, high-speed gas flows, shock waves, bifurcation.
UDC: 518.5:533.6
Language: Russian
Citation: G. A. Tarnavskii, “Nonuniqueness of shockwave structures in real gases: the Mach and/or regular reflection”, Num. Meth. Prog., 4:1 (2003), 258–277
Citation in format AMSBIB
\Bibitem{Tar03}
\by G.~A.~Tarnavskii
\paper Nonuniqueness of shockwave structures in real gases: the Mach and/or regular reflection
\jour Num. Meth. Prog.
\yr 2003
\vol 4
\issue 1
\pages 258--277
\mathnet{http://mi.mathnet.ru/vmp722}
Linking options:
  • https://www.mathnet.ru/eng/vmp722
  • https://www.mathnet.ru/eng/vmp/v4/i1/p258
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Numerical methods and programming
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025