Numerical methods and programming
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Num. Meth. Prog.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Numerical methods and programming, 2016, Volume 17, Issue 3, Pages 204–211 (Mi vmp828)  

Solution of a model inverse spectral problem for the Sturm–Liouville operator on a graph

N. F. Valeeva, Yu. V. Martynovab, Ya. T. Sultanaevc

a Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa
b RN-UfaNIPIneft Company
c Bashkir State Pedagogical University, Ufa
Abstract: A model inverse spectral problem for the Sturm–Liouville operator on a geometric graph is studied. This problem consists in finding $N$ parameters of the boundary conditions using its $N$ known eigenvalues. It is shown that the problem under consideration possess the property of a monotonic dependence of its eigenvalues on the parameters of the boundary conditions. This problem is reduced to a multiparameter inverse spectral problem for the operator in a finite-dimensional space. A new algorithm for the numerical solution of this problem is proposed.
Keywords: spectral theory of differential operators, geometric graph, Sturm–Liouville operator, spectral problems.
Received: 17.05.2016
UDC: 517.4+519.71
Language: Russian
Citation: N. F. Valeev, Yu. V. Martynova, Ya. T. Sultanaev, “Solution of a model inverse spectral problem for the Sturm–Liouville operator on a graph”, Num. Meth. Prog., 17:3 (2016), 204–211
Citation in format AMSBIB
\Bibitem{ValMarSul16}
\by N.~F.~Valeev, Yu.~V.~Martynova, Ya.~T.~Sultanaev
\paper Solution of a model inverse spectral problem for the Sturm--Liouville operator on a graph
\jour Num. Meth. Prog.
\yr 2016
\vol 17
\issue 3
\pages 204--211
\mathnet{http://mi.mathnet.ru/vmp828}
Linking options:
  • https://www.mathnet.ru/eng/vmp828
  • https://www.mathnet.ru/eng/vmp/v17/i3/p204
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Numerical methods and programming
    Statistics & downloads:
    Abstract page:350
    Full-text PDF :116
    References:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025