Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2016, Number 4, Pages 3–12 (Mi vmumm160)  

Mathematics

Homological triviality of the category of $L_p$

N. T. Nemesh
References:
Abstract: The paper presents a complete description of topologically injective, topologically surjective, isometric and coisometric multiplication operators by a function acting between $L_p$ spaces of $\sigma$-finite measure spaces. It is proved that all such operators are invertible from the right and left. As a corollary, it is proved that in the category consisting of $L_p$-spaces with all $p\in[1,+\infty]$ considered as left Banach modules over the algebra of bounded measurable functions, all objects are metrically and topologically projective, injective, and flat.
Key words: multiplication operator, $L_p$-spaces, projectivity, injectivity, flatness.
Received: 13.02.2015
English version:
Moscow University Mathematics Bulletin, 2016, Volume 71, Issue 4, Pages 131–139
DOI: https://doi.org/10.3103/S002713221604001X
Bibliographic databases:
Document Type: Article
UDC: 517.986.225
Language: Russian
Citation: N. T. Nemesh, “Homological triviality of the category of $L_p$”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 4, 3–12; Moscow University Mathematics Bulletin, 71:4 (2016), 131–139
Citation in format AMSBIB
\Bibitem{Nem16}
\by N.~T.~Nemesh
\paper Homological triviality of the category of $L_p$
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2016
\issue 4
\pages 3--12
\mathnet{http://mi.mathnet.ru/vmumm160}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3637741}
\zmath{https://zbmath.org/?q=an:1377.46052}
\elib{https://elibrary.ru/item.asp?id=27125313}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2016
\vol 71
\issue 4
\pages 131--139
\crossref{https://doi.org/10.3103/S002713221604001X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000393855900001}
\elib{https://elibrary.ru/item.asp?id=27581618}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84992383162}
Linking options:
  • https://www.mathnet.ru/eng/vmumm160
  • https://www.mathnet.ru/eng/vmumm/y2016/i4/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025