|
|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2015, Number 1, Pages 62–65
(Mi vmumm211)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
Short notes
Bifurcation diagrams of natural Hamiltonian systems on Bertrand manifolds
D. A. Fedoseev Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
Bifurcation diagrams for natural integrable Hamiltonian systems on Bertrand manifolds (i.e., on configuration spaces of one inverse problem of dynamics) are constructed. Some properties of the corresponding Liuoville foliations are studied, namely, the compactness and the number of foliation components in the preimage under momentum map.
Key words:
Bertrand's Riemannian manifold, surface of revolution, Hamiltonian systems, bifurcation diagram.
Received: 22.01.2014
Citation:
D. A. Fedoseev, “Bifurcation diagrams of natural Hamiltonian systems on Bertrand manifolds”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015, no. 1, 62–65; Moscow University Mathematics Bulletin, 70:1 (2015), 44–47
Linking options:
https://www.mathnet.ru/eng/vmumm211 https://www.mathnet.ru/eng/vmumm/y2015/i1/p62
|
|