|
|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2014, Number 5, Pages 35–40
(Mi vmumm347)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Mathematics
Bases of trigonometric polynomials consisting of shifts of Dirichlet kernels
T. P. Lukashenko Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
The system of shifts of Dirichlet kernel on $\frac{2k\pi}{2n+1}$, $k=0,\pm1,\dots,\pm n$, and the system of such shifts of the conjugate Dirichlet kernel with $\frac12$ are orthogonal bases in the space of trigonometric polynomials of degree $n$. The system of shifts of kernels $\sum_{k=m}^n \cos kx$ and $\sum_{k=m}^n\sin kx$ on $\frac{2k\pi}{n-m+1}$, $k=0,1,\dots,n-m$, is an orthogonal basis in the space of trigonometric polynomials with the components from $m\geqslant1$ tо $n$. There is no orthogonal basis of shifts of any function in this space for $0<m<n$.
Key words:
orthogonal basis, trigonometric polynomials, Dirichlet kernel, conjugate Dirichlet kernel.
Received: 25.09.2013
Citation:
T. P. Lukashenko, “Bases of trigonometric polynomials consisting of shifts of Dirichlet kernels”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2014, no. 5, 35–40; Moscow University Mathematics Bulletin, 69:5 (2014), 211–216
Linking options:
https://www.mathnet.ru/eng/vmumm347 https://www.mathnet.ru/eng/vmumm/y2014/i5/p35
|
|