Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2013, Number 2, Pages 6–12 (Mi vmumm386)  

Mathematics

Optimal investment and reinsurance strategy

A. N. Gromov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: An insurance company is modelled by a compound Poisson process and it is assumed that the company has a possibility to purchase an excess of loss reinsurance defined by retention level as well as invest its surplus into a risky asset described by the Black–Scholes model. An optimal survival probability is derived as a solution to the corresponding Hamilton–Jacobi–Bellman equation. It is proved that any increasing solution to the Hamilton–Jacobi–Bellman equation defines the optimal strategy.
Key words: survival probability, excess of loss reinsurance, Black–Scholes model, Hamilton–Jacobi–Bellman equation.
Received: 16.04.2012
English version:
Moscow University Mathematics Bulletin, 2013, Volume 68, Issue 2, Pages 87–92
DOI: https://doi.org/10.3103/S0027132213020022
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: Russian
Citation: A. N. Gromov, “Optimal investment and reinsurance strategy”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013, no. 2, 6–12; Moscow University Mathematics Bulletin, 68:2 (2013), 87–92
Citation in format AMSBIB
\Bibitem{Gro13}
\by A.~N.~Gromov
\paper Optimal investment and reinsurance strategy
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2013
\issue 2
\pages 6--12
\mathnet{http://mi.mathnet.ru/vmumm386}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3114029}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2013
\vol 68
\issue 2
\pages 87--92
\crossref{https://doi.org/10.3103/S0027132213020022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84878058180}
Linking options:
  • https://www.mathnet.ru/eng/vmumm386
  • https://www.mathnet.ru/eng/vmumm/y2013/i2/p6
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025