|
|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2013, Number 2, Pages 17–23
(Mi vmumm388)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Mathematics
Lower estimates of circuit complexity in the basis of antichain functions
O. V. Podolskaya Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
The antichain function is a characteristic function of an antichain in the Boolean cube. The set of antichain functions is an infinite complete basis. We study the computational complexity of Boolean functions over an antichain functional basis. In this paper we prove an asymptotic lower bound of order $\sqrt{n}$ on the computational complexity of the linear function, the majority function, and almost all Boolean functions of $n$ variables.
Key words:
antichain function, Boolean circuits, linear function, majority function.
Received: 15.06.2012
Citation:
O. V. Podolskaya, “Lower estimates of circuit complexity in the basis of antichain functions”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013, no. 2, 17–23; Moscow University Mathematics Bulletin, 68:2 (2013), 98–103
Linking options:
https://www.mathnet.ru/eng/vmumm388 https://www.mathnet.ru/eng/vmumm/y2013/i2/p17
|
| Statistics & downloads: |
| Abstract page: | 248 | | Full-text PDF : | 70 | | References: | 80 |
|