Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2021, Number 3, Pages 22–31 (Mi vmumm4399)  

Mathematics

Fast algorithms for solving equations of degree $\le4$ in some finite fields

S. B. Gashkov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: It is possible to solve equations of degree $\leq 4$ in some bases of the field $GF(p^s),$ where $p>3,$ $s = 2^kr,$ $k \rightarrow \infty,$ $r=\pm 1 \pmod 6,$ $p,r=O(1)$, with the bit complexity
$$ O_r(M(2^k)kM(r)M(\lceil \log_2p)\rceil)= O_{r,p}(M(s)\log_2s), $$
where $M(n)$ is the complexity of polynomial multiplication. In a normal basis of the fields $GF(3^s),$ $s=\pm 1 \pmod 6,$ all roots may be found with the bit complexity $O(M(GF(3^s))\log_2s),$ where $M(GF(q))$ is the complexity of multiplication in the field $GF(q).$ For normal bases in the fields $GF(2^s),$ where $s = 2r,$ $r \neq 0 \pmod 3,$ the bit complexity is $O(M(GF(2^s))\log_2s).$
Key words: solving equations, bit complexity, tower of finite fields, standard and normal bases.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00294
18-01-00337
Received: 11.09.2020
English version:
Moscow University Mathematics Bulletin, 2021, Volume 76, Issue 3, Pages 107–117
DOI: https://doi.org/10.3103/S0027132221030049
Bibliographic databases:
Document Type: Article
UDC: 511
Language: Russian
Citation: S. B. Gashkov, “Fast algorithms for solving equations of degree $\le4$ in some finite fields”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021, no. 3, 22–31; Moscow University Mathematics Bulletin, 76:3 (2021), 107–117
Citation in format AMSBIB
\Bibitem{Gas21}
\by S.~B.~Gashkov
\paper Fast algorithms for solving equations of degree $\le4$ in some finite fields
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2021
\issue 3
\pages 22--31
\mathnet{http://mi.mathnet.ru/vmumm4399}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4317663}
\zmath{https://zbmath.org/?q=an:7432169}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2021
\vol 76
\issue 3
\pages 107--117
\crossref{https://doi.org/10.3103/S0027132221030049}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000696545000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85115175558}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4399
  • https://www.mathnet.ru/eng/vmumm/y2021/i3/p22
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025