Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2021, Number 5, Pages 3–8 (Mi vmumm4421)  

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics

Noncompactness of segments in the Gromov–Hausdorff space

O. B. Borisova

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (680 kB) Citations (1)
References:
Abstract: We study properties of segments in the Gromov–Hausdorff metric space. A segment is a subset of a metric space consisting of points lying between two given points. We prove that any segment in the Gromov–Hausdorff space with endpoints being non-isometric compact metric spaces contains an element that is a compact metric space with at least one isolated point. Using this theorem and Gromov's precompactness criterion, we prove that any nondegenerate segment in the Gromov–Hausdorff space is not a compact set.
Key words: Gromov–Hausdorff metric, segment, compact.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00775а
Received: 27.06.2020
English version:
Moscow University Mathematics Bulletin, 2021, Volume 76, Issue 5, Pages 187–192
DOI: https://doi.org/10.3103/S0027132221050028
Bibliographic databases:
Document Type: Article
UDC: 515
Language: Russian
Citation: O. B. Borisova, “Noncompactness of segments in the Gromov–Hausdorff space”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021, no. 5, 3–8; Moscow University Mathematics Bulletin, 76:5 (2021), 187–192
Citation in format AMSBIB
\Bibitem{Bor21}
\by O.~B.~Borisova
\paper Noncompactness of segments in the Gromov--Hausdorff space
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2021
\issue 5
\pages 3--8
\mathnet{http://mi.mathnet.ru/vmumm4421}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4383507}
\zmath{https://zbmath.org/?q=an:07514307}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2021
\vol 76
\issue 5
\pages 187--192
\crossref{https://doi.org/10.3103/S0027132221050028}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000750338400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124308658}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4421
  • https://www.mathnet.ru/eng/vmumm/y2021/i5/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025