Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2021, Number 6, Pages 48–51 (Mi vmumm4439)  

Short notes

Lower bound of circuit complexity of parity function in a basis of unbounded fan-in

Yu. A. Kombarov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The paper is focused on realization of parity functions by circuits in the basis $U_\infty$. This basis contains all functions of the form $x_1^{\sigma_1}\&\ldots\& x_k^{\sigma_k}$. It is proved that every circuit over $U_\infty$ computing a parity function of $n$ variables contains at least $2\frac{1}{9}n+\Theta(1)$ gates.
Key words: Boolean circuits, circuit complexity, parity function, minimal circuit.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00337
Received: 21.10.2020
English version:
Moscow University Mathematics Bulletin, 2021, Volume 76, Issue 6, Pages 266–270
DOI: https://doi.org/10.3103/S002713222106005X
Bibliographic databases:
Document Type: Article
UDC: 519.95
Language: Russian
Citation: Yu. A. Kombarov, “Lower bound of circuit complexity of parity function in a basis of unbounded fan-in”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021, no. 6, 48–51; Moscow University Mathematics Bulletin, 76:6 (2021), 266–270
Citation in format AMSBIB
\Bibitem{Kom21}
\by Yu.~A.~Kombarov
\paper Lower bound of circuit complexity of parity function in a basis of unbounded fan-in
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2021
\issue 6
\pages 48--51
\mathnet{http://mi.mathnet.ru/vmumm4439}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4400792}
\zmath{https://zbmath.org/?q=an:1497.94199}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2021
\vol 76
\issue 6
\pages 266--270
\crossref{https://doi.org/10.3103/S002713222106005X}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4439
  • https://www.mathnet.ru/eng/vmumm/y2021/i6/p48
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025