Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2022, Number 5, Pages 3–8 (Mi vmumm4489)  

Mathematics

Solution to a linearized system of two-dimensional dynamics of viscous gas

A. A. Kornev, V. S. Nazarov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: A linear system of partial differential equations approximately describing the dynamics of small perturbations of a nonstationary viscous barotropic gas in a neighborhood of the steady state is considered in the paper. Analytic formulas for the solution are obtained for initial conditions of special type, the asymptotics of the rate of convergence to the stationary solution is studied. Similar assertions are proved for a finite-difference approximation of the original problem constructed on grids of V. I. Lebedev. In addition, the presence of analytical formulas for the solution allows us to explain why a perturbation of velocity jump type decreased significantly better than that for a pressure jump. The obtained results form a basis for studying the problem of asymptotic stabilization of solutions to two-dimensional equations of gas dynamics with dissipation terms.
Key words: viscous gas, finite-difference approximation, stabilization.
Received: 25.02.2021
English version:
Moscow University Mathematics Bulletin, 2022, Volume 77, Issue 5, Pages 209–216
DOI: https://doi.org/10.3103/S0027132222050023
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: A. A. Kornev, V. S. Nazarov, “Solution to a linearized system of two-dimensional dynamics of viscous gas”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022, no. 5, 3–8; Moscow University Mathematics Bulletin, 77:5 (2022), 209–216
Citation in format AMSBIB
\Bibitem{KorNaz22}
\by A.~A.~Kornev, V.~S.~Nazarov
\paper Solution to a linearized system of two-dimensional dynamics of viscous gas
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2022
\issue 5
\pages 3--8
\mathnet{http://mi.mathnet.ru/vmumm4489}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4535594}
\zmath{https://zbmath.org/?q=an:7660971}
\elib{https://elibrary.ru/item.asp?id=49553373}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2022
\vol 77
\issue 5
\pages 209--216
\crossref{https://doi.org/10.3103/S0027132222050023}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4489
  • https://www.mathnet.ru/eng/vmumm/y2022/i5/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025