Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2022, Number 5, Pages 9–17 (Mi vmumm4490)  

Mathematics

Extremes of homogeneous two-parametric Gaussian fields at discretization of parameters

I. A. Kozik

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Gaussian homogeneous fields on two-dimensional Euclidean space are considered, whose correlation functions behave at zero in a power-law manner along each of the coordinates. Exact asymptotics are evaluated for the exceedances probabilities above infinitely growing levels on lattices with different densities along each coordinates and with infinitely decreased lattice density. Relations between the evaluated asymptotic behavior and corresponding ones in continuous time at various rates of lattice densities are discussed.
Key words: two-dimensional Gaussian fields, high excursions of trajectories, discrete time, continuous time.
Received: 07.04.2021
English version:
Moscow University Mathematics Bulletin, 2022, Volume 77, Issue 5, Pages 217–226
DOI: https://doi.org/10.3103/S0027132222050035
Bibliographic databases:
Document Type: Article
UDC: 519.218.7
Language: Russian
Citation: I. A. Kozik, “Extremes of homogeneous two-parametric Gaussian fields at discretization of parameters”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022, no. 5, 9–17; Moscow University Mathematics Bulletin, 77:5 (2022), 217–226
Citation in format AMSBIB
\Bibitem{Koz22}
\by I.~A.~Kozik
\paper Extremes of homogeneous two-parametric Gaussian fields at discretization of parameters
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2022
\issue 5
\pages 9--17
\mathnet{http://mi.mathnet.ru/vmumm4490}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4535595}
\zmath{https://zbmath.org/?q=an:7660972}
\elib{https://elibrary.ru/item.asp?id=49553374}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2022
\vol 77
\issue 5
\pages 217--226
\crossref{https://doi.org/10.3103/S0027132222050035}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4490
  • https://www.mathnet.ru/eng/vmumm/y2022/i5/p9
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025