Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2023, Number 1, Pages 14–19
DOI: https://doi.org/10.55959/MSU0579-9368-1-2023-1-14-19
(Mi vmumm4512)
 

Mathematics

Steiner points in $l_\infty^2$ spaсe

B. B. Bednovab

a Bauman Moscow State Technical University
b I. M. Sechenov First Moscow State Medical University
References:
Abstract: It is proved that for a given set of pairwise distinct points $x_1, \dots, x_n$ the sum of the distances from these points to their Steiner point in $l_\infty^2$ space is equal to the maximum of the sum of lengths of $[\frac{n}{2}] - 1$ separate segments and either a semi-perimeter of a triangle, or another segment with vertices in this set. The case of coincident points among $x_1, \dots, x_n$ is also studied.
Key words: Manhattan plane, Steiner point.
Received: 31.10.2021
English version:
Moscow University Mathematics Bulletin, 2023, Volume 78, Issue 1, Pages 15–20
DOI: https://doi.org/10.3103/S0027132223010023
Bibliographic databases:
Document Type: Article
UDC: 517.982.256 + 515.124.4
Language: Russian
Citation: B. B. Bednov, “Steiner points in $l_\infty^2$ spaсe”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 1, 14–19; Moscow University Mathematics Bulletin, 78:1 (2023), 15–20
Citation in format AMSBIB
\Bibitem{Bed23}
\by B.~B.~Bednov
\paper Steiner points in $l_\infty^2$ spaсe
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2023
\issue 1
\pages 14--19
\mathnet{http://mi.mathnet.ru/vmumm4512}
\crossref{https://doi.org/10.55959/MSU0579-9368-1-2023-1-14-19}
\zmath{https://zbmath.org/?q=an:7711499}
\elib{https://elibrary.ru/item.asp?id=50317688}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2023
\vol 78
\issue 1
\pages 15--20
\crossref{https://doi.org/10.3103/S0027132223010023}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4512
  • https://www.mathnet.ru/eng/vmumm/y2023/i1/p14
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025