|
|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2012, Number 3, Pages 3–8
(Mi vmumm488)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Mathematics
Two-side estimates of the number of fixed points of a discrete logarithm
E. A. Grechnikov Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
Lower and upper bounds are obtained for an average number of solutions of the congruence $g^x\equiv x\pmod p$ in nonnegative integer numbers $x\le p-1$, where $g$ is a primitive root modulo $p$.
Key words:
discrete logarithm, Brizolis problem.
Received: 11.08.2010
Citation:
E. A. Grechnikov, “Two-side estimates of the number of fixed points of a discrete logarithm”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2012, no. 3, 3–8; Moscow University Mathematics Bulletin, 67:3 (2012), 91–96
Linking options:
https://www.mathnet.ru/eng/vmumm488 https://www.mathnet.ru/eng/vmumm/y2012/i3/p3
|
|