|
|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2017, Number 3, Pages 3–8
(Mi vmumm63)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Mathematics
Nonaffine differential-algebraic curves do not exist
O. V. Gerasimova, Yu. P. Razmyslov Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
The paper outlines why the spectrum of maximal ideals ${\rm Spec}_\mathbb{C} A$ of a countably-dimensional differential $\mathbb{C}$-algebra $A$ of transcendence degree 1 without zero devisors is locally analytic, which means that for any $\mathbb{C}$-homomorphism $\psi_M : A \to \mathbb{C}$ ($M \in {\rm Spec}_{\mathbb{C}} A$) and any $a \in A$ the Taylor series $\widetilde{\psi}_M (a) \stackrel{{\rm def}}{=} \sum\limits_{m=0}^{\infty} \psi_M(a^{(m)}) \frac{z^m}{m!}$ has nonzero radius of convergence depending on the element $a \in A$.
Key words:
differential algebra, affine curve, parameterisation, power series, analyticity.
Received: 05.09.2016
Citation:
O. V. Gerasimova, Yu. P. Razmyslov, “Nonaffine differential-algebraic curves do not exist”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, no. 3, 3–8; Moscow University Mathematics Bulletin, 72:3 (2017), 89–93
Linking options:
https://www.mathnet.ru/eng/vmumm63 https://www.mathnet.ru/eng/vmumm/y2017/i3/p3
|
| Statistics & downloads: |
| Abstract page: | 277 | | Full-text PDF : | 96 | | References: | 53 | | First page: | 1 |
|