|
|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2011, Number 1, Pages 31–36
(Mi vmumm652)
|
|
|
|
Mathematics
Maximal commutative subalgebras of functions on spaces dual to Lie algebras
M. M. Derkacha, A. S. Tenb a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Yandex company, Moscow
Abstract:
The problem of searching the maximal commutative sets of polynomial functions on the dual space to the semidirect sum of a Lie algebra and a vector space is studied. It is proved that if the first component of the semidirect sum is a compact algebra, then the set of functions can be described explicitly. This result is applied to some particular Lie algebras.
Key words:
Lie–Poisson bracket, Liouville theorem, Mishchenko–Fomenko conjecture, complete commutative sets of polynomials.
Received: 16.06.2010
Citation:
M. M. Derkach, A. S. Ten, “Maximal commutative subalgebras of functions on spaces dual to Lie algebras”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2011, no. 1, 31–36; Moscow University Mathematics Bulletin, 66:1 (2011), 30–34
Linking options:
https://www.mathnet.ru/eng/vmumm652 https://www.mathnet.ru/eng/vmumm/y2011/i1/p31
|
|