Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2017, Number 3, Pages 59–62 (Mi vmumm71)  

This article is cited in 3 scientific papers (total in 3 papers)

Short notes

The semantics of realizability for the constructive set theory based on hyperarithmetical predicates

A. Yu. Konovalov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (309 kB) Citations (3)
References:
Abstract: A semantics of realizability for formulas of the language of set theory based on hyperarithmetical predicates of membership is introduced. It is proved that the constructive set theory without the extensionality axioms is sound with this semantics.
Key words: constructive semantics, realizability, axiomatic set theory, constructive set theory, hyperarithmetical realizability.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00127
Received: 05.10.2016
English version:
Moscow University Mathematics Bulletin, 2017, Volume 72, Issue 3, Pages 129–132
DOI: https://doi.org/10.3103/S0027132217030068
Bibliographic databases:
Document Type: Article
UDC: 510.25; 510.64
Language: Russian
Citation: A. Yu. Konovalov, “The semantics of realizability for the constructive set theory based on hyperarithmetical predicates”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, no. 3, 59–62; Moscow University Mathematics Bulletin, 72:3 (2017), 129–132
Citation in format AMSBIB
\Bibitem{Kon17}
\by A.~Yu.~Konovalov
\paper The semantics of realizability for the constructive set theory based on hyperarithmetical predicates
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2017
\issue 3
\pages 59--62
\mathnet{http://mi.mathnet.ru/vmumm71}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3673261}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2017
\vol 72
\issue 3
\pages 129--132
\crossref{https://doi.org/10.3103/S0027132217030068}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000404664300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021639332}
Linking options:
  • https://www.mathnet.ru/eng/vmumm71
  • https://www.mathnet.ru/eng/vmumm/y2017/i3/p59
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025