Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2009, Number 4, Pages 13–22 (Mi vmumm884)  

This article is cited in 6 scientific papers (total in 6 papers)

Mathematics

Uniform Morse lemma and isotopy criterion for Morse functions on surfaces

E. A. Kudryavtseva

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (278 kB) Citations (6)
Abstract: Let $M$ be a smooth compact (orientable or not) surface with or without a boundary. Let $\mathcal{D}_0\subset\operatorname{Diff}(M)$ be the group of diffeomorphisms homotopic to $\operatorname{id}_M$. Two smooth functions $f,g : M\to\mathbb{R}$ are called isotopic if $f=h_2\circ g\circ h_1$ for some diffeomorphisms $h_1\in\mathcal{D}_0$ and $h_2\in\operatorname{Diff}^+(\mathbb{R})$. Let $F$ be the space of Morse functions on $M$ which are constant on each boundary component and have no critical points on the boundary. A criterion for two Morse functions from $F$ to be isotopic is proved. For each Morse function $f\in F$, a collection of Morse local coordinates in disjoint circular neighbourhoods of its critical points is constructed, which continuously and $\operatorname{Diff}(M)$-equivariantly depends on $f$ in $C^\infty$-topology on $F$ (“uniform Morse lemma”). Applications of these results to the problem of describing the homotopy type of the space $F$ are formulated.
Key words: Morse function, equivalence of Morse functions, closed surface, Morse lemma.
Funding agency Grant number
Russian Foundation for Basic Research 08-01-91300-ИНД-a
07-01-00648
05-01-22002-НЦНИ
Ministry of Education and Science of the Russian Federation НШ-660.2008.1
2.1.1.7988
Received: 14.11.2008
Bibliographic databases:
Document Type: Article
UDC: 515.164.174+515.122.55
Language: Russian
Citation: E. A. Kudryavtseva, “Uniform Morse lemma and isotopy criterion for Morse functions on surfaces”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2009, no. 4, 13–22
Citation in format AMSBIB
\Bibitem{Kud09}
\by E.~A.~Kudryavtseva
\paper Uniform Morse lemma and isotopy criterion for Morse functions on surfaces
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2009
\issue 4
\pages 13--22
\mathnet{http://mi.mathnet.ru/vmumm884}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2657272}
\zmath{https://zbmath.org/?q=an:1304.58009}
Linking options:
  • https://www.mathnet.ru/eng/vmumm884
  • https://www.mathnet.ru/eng/vmumm/y2009/i4/p13
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025