Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2005, Volume 5, Issue 2, Pages 21–27 (Mi vngu205)  

On convex hulls of self-similar sets

I. B. Davydkin, A. V. Tetenov
References:
Abstract: Let $S=\{s_1,\dots,s_m\}$ be a system of contraction similitudes in Banach space and $K(S)$ it's invariant set. We obtain the conditions for the convex hull $H(K)$ of the invariant set to be a finite-sided polyhedron and give an exact estimate for the diameter of $K(S)$ in terms of contraction coefficients of $s_i$.
Document Type: Article
UDC: 517.54
Language: Russian
Citation: I. B. Davydkin, A. V. Tetenov, “On convex hulls of self-similar sets”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 5:2 (2005), 21–27
Citation in format AMSBIB
\Bibitem{DavTet05}
\by I.~B.~Davydkin, A.~V.~Tetenov
\paper On convex hulls of self-similar sets
\jour Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform.
\yr 2005
\vol 5
\issue 2
\pages 21--27
\mathnet{http://mi.mathnet.ru/vngu205}
Linking options:
  • https://www.mathnet.ru/eng/vngu205
  • https://www.mathnet.ru/eng/vngu/v5/i2/p21
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Новосибирского государственного университета. Серия: математика, механика, информатика
    Statistics & downloads:
    Abstract page:218
    Full-text PDF :109
    References:81
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025