Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2005, Volume 5, Issue 2, Pages 86–105 (Mi vngu209)  

Coercive properties of ordinary differential operator of even order

A. V. Chueshev
References:
Abstract: Basic question which we explore in this work — question about conditions at realization of which for given ordinary differential operator of order of $2m$, with a higher coefficient changing a sign on the interval of task, take place properties of coercively.
Document Type: Article
UDC: 517.95
Language: Russian
Citation: A. V. Chueshev, “Coercive properties of ordinary differential operator of even order”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 5:2 (2005), 86–105
Citation in format AMSBIB
\Bibitem{Chu05}
\by A.~V.~Chueshev
\paper Coercive properties of ordinary differential operator of even order
\jour Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform.
\yr 2005
\vol 5
\issue 2
\pages 86--105
\mathnet{http://mi.mathnet.ru/vngu209}
Linking options:
  • https://www.mathnet.ru/eng/vngu209
  • https://www.mathnet.ru/eng/vngu/v5/i2/p86
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Новосибирского государственного университета. Серия: математика, механика, информатика
    Statistics & downloads:
    Abstract page:393
    Full-text PDF :108
    References:88
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025