Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find







Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2006, Volume 6, Issue 1, Pages 70–76 (Mi vngu226)  

Graded modal operators and fixed points

S. I. Mardaev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: There is the well-known Fixed Point Theorem in the theory of modal logics. In the article this theorem is generalized from monomodal case to graded modalities. The following theorem is proved
Theorem. For any graded modalized operator $F_\varphi$, there is unique fixed point of the operator $F_\varphi$ in every strictly partially ordered model with the ascending chain condition and there is a graded formula $\omega$, which defines the fixed point in every such model. The formula $\omega$ contains only those graded modalities, which are contained in $\varphi$.
Received: 02.11.2005
Document Type: Article
UDC: 510.64
Language: Russian
Citation: S. I. Mardaev, “Graded modal operators and fixed points”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 6:1 (2006), 70–76
Citation in format AMSBIB
\Bibitem{Mar06}
\by S.~I.~Mardaev
\paper Graded modal operators and fixed points
\jour Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform.
\yr 2006
\vol 6
\issue 1
\pages 70--76
\mathnet{http://mi.mathnet.ru/vngu226}
Linking options:
  • https://www.mathnet.ru/eng/vngu226
  • https://www.mathnet.ru/eng/vngu/v6/i1/p70
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Новосибирского государственного университета. Серия: математика, механика, информатика
    Statistics & downloads:
    Abstract page:176
    Full-text PDF :83
    References:62
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025