Siberian Journal of Pure and Applied Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Siberian Journal of Pure and Applied Mathematics, 2016, Volume 16, Issue 3, Pages 98–102
DOI: https://doi.org/10.17377/PAM.2016.16.309
(Mi vngu414)
 

This article is cited in 1 scientific paper (total in 1 paper)

Solution of boundary value problems in cylinders with a two-layer film inclusion

S. E. Kholodovskii

Zabaikalsky State University, Chita
Full-text PDF (173 kB) Citations (1)
References:
Abstract: We consider a class of boundary value problems (elliptic, parabolic and hyperbolic equations) in cylinders, separated by double-layer film on two half cylinder. The film consists of infinitely thin strongly and weakly permeable layers. A theorem of existence and uniqueness. Formulas expressing the solutions to these problems through the solutions of the analogous classical problems in homogeneous cylinders without film are derived.
Keywords: boundary value problems, generalized transmission conditions, the inclusion of a two-layer film, the method of convolution of Fourier expansions.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 2014/255 НИР 2603.14
Received: 03.11.2015
English version:
Journal of Mathematical Sciences, 2018, Volume 230, Issue 1, Pages 55–59
DOI: https://doi.org/10.1007/s10958-018-3726-z
Document Type: Article
UDC: 517.956
Language: Russian
Citation: S. E. Kholodovskii, “Solution of boundary value problems in cylinders with a two-layer film inclusion”, Sib. J. Pure and Appl. Math., 16:3 (2016), 98–102; J. Math. Sci., 230:1 (2018), 55–59
Citation in format AMSBIB
\Bibitem{Kho16}
\by S.~E.~Kholodovskii
\paper Solution of boundary value problems in cylinders with a two-layer film inclusion
\jour Sib. J. Pure and Appl. Math.
\yr 2016
\vol 16
\issue 3
\pages 98--102
\mathnet{http://mi.mathnet.ru/vngu414}
\crossref{https://doi.org/10.17377/PAM.2016.16.309}
\transl
\jour J. Math. Sci.
\yr 2018
\vol 230
\issue 1
\pages 55--59
\crossref{https://doi.org/10.1007/s10958-018-3726-z}
Linking options:
  • https://www.mathnet.ru/eng/vngu414
  • https://www.mathnet.ru/eng/vngu/v16/i3/p98
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал чистой и прикладной математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025