Siberian Journal of Pure and Applied Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Siberian Journal of Pure and Applied Mathematics, 2017, Volume 17, Issue 1, Pages 73–77
DOI: https://doi.org/10.17377/PAM.2017.17.106
(Mi vngu431)
 

A lemma on Lie bracket under insufficient smoothness

K. V. Storozhukab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
References:
Abstract: Let two vector fields on a $C^2$-variety $M$ be tangent to a $C^1$-submanifold $F\subset M$. We show if that these fields are differentiable at a point $p\in F$, then their Lie bracket is also tangent to $F$. This statement is a weakening of the “easy part” assumptions of the Frobenius theorem.
Keywords: Lie bracket.
Received: 10.08.2016
Document Type: Article
UDC: 514.763.22
Language: Russian
Citation: K. V. Storozhuk, “A lemma on Lie bracket under insufficient smoothness”, Sib. J. Pure and Appl. Math., 17:1 (2017), 73–77
Citation in format AMSBIB
\Bibitem{Sto17}
\by K.~V.~Storozhuk
\paper A lemma on Lie bracket under insufficient smoothness
\jour Sib. J. Pure and Appl. Math.
\yr 2017
\vol 17
\issue 1
\pages 73--77
\mathnet{http://mi.mathnet.ru/vngu431}
\crossref{https://doi.org/10.17377/PAM.2017.17.106}
Linking options:
  • https://www.mathnet.ru/eng/vngu431
  • https://www.mathnet.ru/eng/vngu/v17/i1/p73
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал чистой и прикладной математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025