|
|
Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2011, Volume 11, Issue 3, Pages 77–84
(Mi vngu89)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Minimal Elements and Minimal Covers in Rogers Semilattice of Computable Numberings in Hyperarithmetical Hierarchy
N. A. Baklanova Novosibirsk State University
Abstract:
Proved that Rogers semilattice of any infinite $\Sigma_{\omega}$-computable family contains infinitely many minimal elements, and each non-$0'$-universal numbering has infinitely many minimal covers.
Keywords:
numbering, Rogers semilattice, hyperarithmetical hierarchy, minimal elements, minimal covers.
Received: 25.02.2011
Citation:
N. A. Baklanova, “Minimal Elements and Minimal Covers in Rogers Semilattice of Computable Numberings in Hyperarithmetical Hierarchy”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 11:3 (2011), 77–84
Linking options:
https://www.mathnet.ru/eng/vngu89 https://www.mathnet.ru/eng/vngu/v11/i3/p77
|
|