Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2025, Volume 29, Number 3, Pages 566–578
DOI: https://doi.org/10.14498/vsgtu2133
(Mi vsgtu2133)
 

Short Communication
Differential Equations and Mathematical Physics

On determination of gradient in optimal control problems for frictionless mechanical oscillatory systems

A. S. Zinchenkoa, A. A. Nekhaevb, A. M. Romanenkovab

a Moscow Aviation Institute (National Research University), Moscow, 125993, Russian Federation
b Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, Moscow, 119333, Russian Federation (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: This paper investigates the problem of gradient computation for an optimal control algorithm applied to a distributed system. The mathematical model of the system is described by an initial-boundary value problem for a linear high-order hyperbolic partial differential equation. The study considers an oscillatory process without energy dissipation. The proposed model covers a wide class of applied problems, including vibrations of strings, beams, rods, and other one-dimensional elastic mechanical systems, as well as systems reducible to these cases. By using the method of integral estimates, we prove a uniqueness theorem for the solution and derive an explicit expression for the gradient of the minimized quadratic functional.
Keywords: optimal control, hyperbolic equations, oscillatory systems, gradient method, initial-boundary value problems
Received: November 13, 2024
Revised: May 23, 2025
Accepted: June 2, 2025
First online: July 3, 2025
Bibliographic databases:
Document Type: Article
UDC: 517.977.56
MSC: 49K20, 35Lxx
Language: Russian
Citation: A. S. Zinchenko, A. A. Nekhaev, A. M. Romanenkov, “On determination of gradient in optimal control problems for frictionless mechanical oscillatory systems”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 29:3 (2025), 566–578
Citation in format AMSBIB
\Bibitem{ZinNekRom25}
\by A.~S.~Zinchenko, A.~A.~Nekhaev, A.~M.~Romanenkov
\paper On determination of gradient in optimal control problems for frictionless mechanical oscillatory systems
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2025
\vol 29
\issue 3
\pages 566--578
\mathnet{http://mi.mathnet.ru/vsgtu2133}
\crossref{https://doi.org/10.14498/vsgtu2133}
\edn{https://elibrary.ru/VCVBSZ}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu2133
  • https://www.mathnet.ru/eng/vsgtu/v229/i3/p566
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:160
    Full-text PDF :50
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025