|
This article is cited in 1 scientific paper (total in 1 paper)
Mathematical Modeling
Monte–Carlo estimations for powers of Green operator and the first eigenvalue for Dirichlet boundary value problem
A. N. Kuznetsov, I. A. Rytenkova, A. S. Sipin Dept. of Applied Mathematics, Vologda State Pedagogical University, Vologda
(published under the terms of the Creative Commons Attribution 4.0 International License)
Abstract:
In this paper, we examine the algorithm for computing the powers of a Green operator and the first eigenvalue for the Dirichlet boundary value problem using Monte–Carlo method. The efficiency of numerical realization of these algorithms is also discussed.
Keywords:
Monte-Carlo method, eigenvalues of the Dirichlet boundary value problem, Green function, Green operator, distributed computing.
Original article submitted 11/V/2011 revision submitted – 15/XI/2011
Citation:
A. N. Kuznetsov, I. A. Rytenkova, A. S. Sipin, “Monte–Carlo estimations for powers of Green operator and the first eigenvalue for Dirichlet boundary value problem”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(25) (2011), 82–92
Linking options:
https://www.mathnet.ru/eng/vsgtu962 https://www.mathnet.ru/eng/vsgtu/v125/p82
|
| Statistics & downloads: |
| Abstract page: | 684 | | Full-text PDF : | 349 | | References: | 88 | | First page: | 1 |
|