Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik SamU. Estestvenno-Nauchnaya Ser.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya, 2016, Issue 3-4, Pages 14–23 (Mi vsgu507)  

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics

On a model of optimal temperature control in hothouses

I. V. Astashovaab, D. A. Lashinc, A. V. Filinovskiyad

a Lomonosov Moscow State University, Moscow, 119991, Russian Federation
b Plekhanov Russian University of Economics, 117997, Stremyanny lane, 36, Moscow, Russian Federation
c FITO research and production company, 142784, Russian Federation, Moscow, Moscovskiy, 35-12
d Bauman Moscow State Technical University, 105005, Baumanskaya 2nd st., 5
Full-text PDF (267 kB) Citations (1)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: While growing plants in industrial hothouses it needs to keep the temperature according to round-the-clock graph at the point of growth of plant located at the fixed height. Only small deviations are admitted. To obtain this it is possible to increase the temperature by heating the floor and to decrease the temperature by opening the ventilator windows at the ceiling. We propose and analyse the model based on the heat equation. Physical sense of this problem is that at one end of the infinitely thin rod of length $l$ (the height of the hothouse) we keep during the time $T$ the temperature $\phi(t)$ (control function), while at the other end we have the given heat flow $\psi(t)$. It requires to find the control function $\phi_0(t)$ such that the temperature at the fixed point c be maximally closed to the given temperature $z(t)$. For the estimation of the control quality we use a quadratic integral functional.
Keywords: optimal control, temperature control, hothouse, heat equation, quadratic integral functional.
Received: 18.06.2016
Revised: 20.06.2016
Bibliographic databases:
Document Type: Article
UDC: 517.977.56
Language: Russian
Citation: I. V. Astashova, D. A. Lashin, A. V. Filinovskiy, “On a model of optimal temperature control in hothouses”, Vestnik SamU. Estestvenno-Nauchnaya Ser., 2016, no. 3-4, 14–23
Citation in format AMSBIB
\Bibitem{AstLasFil16}
\by I.~V.~Astashova, D.~A.~Lashin, A.~V.~Filinovskiy
\paper On a model of optimal temperature control in hothouses
\jour Vestnik SamU. Estestvenno-Nauchnaya Ser.
\yr 2016
\issue 3-4
\pages 14--23
\mathnet{http://mi.mathnet.ru/vsgu507}
\elib{https://elibrary.ru/item.asp?id=29389322}
Linking options:
  • https://www.mathnet.ru/eng/vsgu507
  • https://www.mathnet.ru/eng/vsgu/y2016/i3/p14
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного университета. Естественнонаучная серия
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025