|
|
Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2015, Issue 6(128), Pages 12–22
(Mi vsgu514)
|
|
|
|
Mathematics
On oscillation of solutions to quasi-linear Emden–Fowler type higher-order differential equations
I. V. Astashova Lomonosov Moscow State University, 1, Leninskie Gory, Moscow, 119991, Russian Federation
(published under the terms of the Creative Commons Attribution 4.0 International License)
Abstract:
Existence and behavior of oscillatory solutions to nonlinear equations with regular and singular power nonlinearity are investigated. In particular, the existence of oscillatory solutions is proved for the equation
\begin{gather*}
y^{(n)}+P(x,y,y',\ldots,y^{(n-1)})|y|^k\ {\rm sign}\,y=0,\\
n\ge 2,\,\,\,k\in \mathbb {R},\,\,\, k>1,\,\,\, P\neq0,\,\,\,\,P\in C(\mathbb{R}^{n+1}).
\end{gather*}
A criterion is formulated for oscillation of all solutions to the quasilinear even-order differential equation
\begin{gather*}
y^{(n)}+\sum_{i=0}^{n-1}a_{j}(x)\;y^{(i)}+p(x)\;|y|^{k} {\rm sign} y=0,\\
p\in C(\mathbb{R}),\,\,a_j\in C(\mathbb{R}),\,\,\,j=0,\dots,{n-1},\,\,\, k>1,\,\, n=2m,\,\, m\in\mathbb{N},
\end{gather*}
which generalizes the well-known Atkinson's and Kiguradze's criteria.
The existence of quasi-periodic solutions is proved both for regular ($k>1$) and singular
($0<k<1$) nonlinear equations
$$
y^{(n)}+p_0\,|y|^{k} {\rm sign} y=0, \quad n>2,\quad k\in \mathbb {R},\quad k>0,\,\,\,k\neq1,
\quad p_0\in \mathbb {R},
$$
with $(-1)^{n}p_0>0.$
A result on the existence of periodic oscillatory solutions is formulated for this equation with $n=4,\,\,k>0,\,\,k\neq1,\,\,p_0<0.$
Keywords:
quasilinear differential equation, power nonlinearity, oscillatory solution, oscillatory criterion, periodic solutions, quasi-periodic solutions.
Received: 18.07.2015
Citation:
I. V. Astashova, “On oscillation of solutions to quasi-linear Emden–Fowler type higher-order differential equations”, Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2015, no. 6(128), 12–22
Linking options:
https://www.mathnet.ru/eng/vsgu514 https://www.mathnet.ru/eng/vsgu/y2015/i6/p12
|
| Statistics & downloads: |
| Abstract page: | 227 | | Full-text PDF : | 84 | | References: | 43 |
|