Vestnik SamGU. Estestvenno-Nauchnaya Ser.
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik SamU. Estestvenno-Nauchnaya Ser.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2015, Issue 6(128), Pages 12–22 (Mi vsgu514)  

Mathematics

On oscillation of solutions to quasi-linear Emden–Fowler type higher-order differential equations

I. V. Astashova

Lomonosov Moscow State University, 1, Leninskie Gory, Moscow, 119991, Russian Federation (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: Existence and behavior of oscillatory solutions to nonlinear equations with regular and singular power nonlinearity are investigated. In particular, the existence of oscillatory solutions is proved for the equation
\begin{gather*} y^{(n)}+P(x,y,y',\ldots,y^{(n-1)})|y|^k\ {\rm sign}\,y=0,\\ n\ge 2,\,\,\,k\in \mathbb {R},\,\,\, k>1,\,\,\, P\neq0,\,\,\,\,P\in C(\mathbb{R}^{n+1}). \end{gather*}
A criterion is formulated for oscillation of all solutions to the quasilinear even-order differential equation
\begin{gather*} y^{(n)}+\sum_{i=0}^{n-1}a_{j}(x)\;y^{(i)}+p(x)\;|y|^{k} {\rm sign} y=0,\\ p\in C(\mathbb{R}),\,\,a_j\in C(\mathbb{R}),\,\,\,j=0,\dots,{n-1},\,\,\, k>1,\,\, n=2m,\,\, m\in\mathbb{N}, \end{gather*}
which generalizes the well-known Atkinson's and Kiguradze's criteria.
The existence of quasi-periodic solutions is proved both for regular ($k>1$) and singular ($0<k<1$) nonlinear equations
$$ y^{(n)}+p_0\,|y|^{k} {\rm sign} y=0, \quad n>2,\quad k\in \mathbb {R},\quad k>0,\,\,\,k\neq1, \quad p_0\in \mathbb {R}, $$
with $(-1)^{n}p_0>0.$ A result on the existence of periodic oscillatory solutions is formulated for this equation with $n=4,\,\,k>0,\,\,k\neq1,\,\,p_0<0.$
Keywords: quasilinear differential equation, power nonlinearity, oscillatory solution, oscillatory criterion, periodic solutions, quasi-periodic solutions.
Received: 18.07.2015
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: I. V. Astashova, “On oscillation of solutions to quasi-linear Emden–Fowler type higher-order differential equations”, Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2015, no. 6(128), 12–22
Citation in format AMSBIB
\Bibitem{Ast15}
\by I.~V.~Astashova
\paper On oscillation of solutions to quasi-linear Emden--Fowler type higher-order differential equations
\jour Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya
\yr 2015
\issue 6(128)
\pages 12--22
\mathnet{http://mi.mathnet.ru/vsgu514}
\elib{https://elibrary.ru/item.asp?id=24307586}
Linking options:
  • https://www.mathnet.ru/eng/vsgu514
  • https://www.mathnet.ru/eng/vsgu/y2015/i6/p12
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного университета. Естественнонаучная серия
    Statistics & downloads:
    Abstract page:227
    Full-text PDF :84
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025