Vestnik SamGU. Estestvenno-Nauchnaya Ser.
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik SamU. Estestvenno-Nauchnaya Ser.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2015, Issue 6(128), Pages 110–116 (Mi vsgu527)  

This article is cited in 2 scientific papers (total in 2 papers)

Mathematics

On solutions of traveling wave type for a nonlinear parabolic equation

S. V. Pikulin

Dorodnicyn Computing Centre of RAS, 40, Vavilov Street, Moscow, 119333, Russian Federation
Full-text PDF (444 kB) Citations (2)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: We consider the Kolmogorov–Petrovsky–Piskunov equation which is a quasilinear parabolic equation of second order appearing in the flame propagation theory and in modeling of certain biological processes. An analytical construction of self-similar solutions of traveling wave kind is presented for the special case when the nonlinear term of the equation is the product of the argument and a linear function of a positive power of the argument. The approach to the construction of solutions is based on the study of singular points of analytic continuation of the solution to the complex domain and on applying the Fuchs–Kovalevskaya–Painlevé test. The resulting representation of the solution allows an efficient numerical implementation.
Keywords: Kolmogorov–Petrovsky–Piskunov equation, equation of Fujita type, generalized Fisher equation, Abel equation of the second kind, intermediate asymptotic regime, traveling waves, analytic continuation, movable and fixed singular points, algebraic branch points, Puiseux series, explicit solution, dead core solution, Painlevé test, Fuchs–Kowalewski method.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00923_а
Russian Academy of Sciences - Federal Agency for Scientific Organizations 3
The work is carried out with financial support from the Russian Foundation for Basic Research (project 13-01-00923) and programme № 3 of fundamental research of Branch of Mathematics of the Russian Academy of the Russian Academy of Sciences.
Received: 12.08.2015
Bibliographic databases:
Document Type: Article
UDC: 517.95, 517.925.7
Language: Russian
Citation: S. V. Pikulin, “On solutions of traveling wave type for a nonlinear parabolic equation”, Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2015, no. 6(128), 110–116
Citation in format AMSBIB
\Bibitem{Pik15}
\by S.~V.~Pikulin
\paper On solutions of traveling wave type for a nonlinear parabolic equation
\jour Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya
\yr 2015
\issue 6(128)
\pages 110--116
\mathnet{http://mi.mathnet.ru/vsgu527}
\elib{https://elibrary.ru/item.asp?id=24307600}
Linking options:
  • https://www.mathnet.ru/eng/vsgu527
  • https://www.mathnet.ru/eng/vsgu/y2015/i6/p110
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного университета. Естественнонаучная серия
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025