Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik SamU. Estestvenno-Nauchnaya Ser.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya, 2024, Volume 30, Issue 4, Pages 53–83
DOI: https://doi.org/10.18287/2541-7525-2024-30-5-53-83
(Mi vsgu753)
 

Mechanics

Nonlinear equations of flexible plates deformations

K. G. Koifmana, S. A. Lychevb

a Bauman Moscow State Technical University, Moscow, Russian Federation
b Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, Russian Federation (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: Nonlinear equations of deformation of flexible plates are formulated in general nonorthogonal coordinates with taking into account incompatible local deformations. The following assumptions are used. 1. Displacements of the plate from the reference (self-stressed) shape are restricted by the kinematic hypotheses of Kirchhoff — Love. 2. Elementary volumes constituting the reference shape can be locally transformed into an unstressed state by means of a nondegenerate linear transformation (hypothesis of local discharging). 3. Transformations inverse to local unloading, referred to as implants, can be found from the solution of the evolutionary problem simulating the successive deposition of infinitely thin layers on the front boundary surface of the plate. Geometric spaces of affine connection that model the global stress-free reference shape are constructed. The following special cases are considered: Weitzenböck space (with non-zero torsion), Riemann space (with non-zero curvature) and Weyl space (with non-zero non-metricity).
Keywords: hyperelasticity, flexible plates, kinematic hypothesis, nonlinear equations, asymptotic expansion, incompatible deformations, material connection.
Funding agency Grant number
Russian Science Foundation 23-19-00866
The work was supported by the Russian Science Foundation (grant No. 23-19-00866).
Received: 18.10.2024
Accepted: 25.11.2025
Document Type: Article
UDC: 510.6
Language: Russian
Citation: K. G. Koifman, S. A. Lychev, “Nonlinear equations of flexible plates deformations”, Vestnik SamU. Estestvenno-Nauchnaya Ser., 30:4 (2024), 53–83
Citation in format AMSBIB
\Bibitem{KoiLyc24}
\by K.~G.~Koifman, S.~A.~Lychev
\paper Nonlinear equations of flexible plates deformations
\jour Vestnik SamU. Estestvenno-Nauchnaya Ser.
\yr 2024
\vol 30
\issue 4
\pages 53--83
\mathnet{http://mi.mathnet.ru/vsgu753}
\crossref{https://doi.org/10.18287/2541-7525-2024-30-5-53-83}
Linking options:
  • https://www.mathnet.ru/eng/vsgu753
  • https://www.mathnet.ru/eng/vsgu/v30/i4/p53
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного университета. Естественнонаучная серия
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025