Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 2020, Volume 7, Issue 1, Pages 15–27
DOI: https://doi.org/10.21638/11701/spbu01.2020.102
(Mi vspua199)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Sharp jackson - Chernykh type inequality for spline approximations on the line

O. L. Vinogradov

St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
Full-text PDF (342 kB) Citations (1)
References:
Abstract: An analog of the Jackson - Chernykh inequality for spline approximations in the space $L_2(\mathbb{R})$ is established. For $r \in \mathbb{N}$, $\sigma > 0$, we denote by $A_{\sigma r}(f)_2$ the best approximation of a function $f \in L_2(\mathbb{R})$ by the space of splines of degree $r$ and of minimal defect with knots $\frac{j \pi}{\sigma}$, $j \in \mathbb{Z}$, and by $\omega(f, \delta)$ its first order modulus of continuity in $L_2(\mathbb{R})$. The main result of the paper is the following. For every $f \in L_2(\mathbb{R})$
$$A_{\sigma r}(f)_2 \leqslant \frac{1}{\sqrt{2}}\omega(f,\frac{\theta_r \pi}{\sigma})_2$$
, where $\varepsilon_r$ is the positive root of the equation
$$\frac{4 \varepsilon^2(ch \frac{\pi \varepsilon}{\tau}-1)}{ch \frac{\pi \varepsilon}{\tau}+\cos \frac{\pi}{\tau}}= \frac{1}{3^{2r-2}}, \tau = \sqrt{1-\varepsilon^2}$$
, $\theta_r = \frac{1}{\sqrt{1-\varepsilon_r^2}}$. The constant $\frac{1}{\sqrt{2}}$ cannot be reduced on the whole class $L_2(\mathbb{R})$, even if one insreases the step of the modulus of continuity.
Keywords: Jackson inequality, splines, sharp constants.
Funding agency Grant number
Russian Science Foundation 18-11-00055
This work is supported by the Russian Science Foundation under grant No. 18-11-00055.
Received: 03.06.2019
Revised: 11.08.2019
Accepted: 19.09.2019
English version:
Vestnik St. Petersburg University, Mathematics, 2020, Volume 7, Issue 1, Pages 10–19
DOI: https://doi.org/10.1134/S1063454120010112
Document Type: Article
UDC: 517.5
MSC: 41A15, 41A17, 41A44
Language: Russian
Citation: O. L. Vinogradov, “Sharp jackson - Chernykh type inequality for spline approximations on the line”, Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7:1 (2020), 15–27; Vestn. St. Petersbg. Univ., Math., 7:1 (2020), 10–19
Citation in format AMSBIB
\Bibitem{Vin20}
\by O.~L.~Vinogradov
\paper Sharp jackson - Chernykh type inequality for spline approximations on the line
\jour Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
\yr 2020
\vol 7
\issue 1
\pages 15--27
\mathnet{http://mi.mathnet.ru/vspua199}
\crossref{https://doi.org/10.21638/11701/spbu01.2020.102}
\transl
\jour Vestn. St. Petersbg. Univ., Math.
\yr 2020
\vol 7
\issue 1
\pages 10--19
\crossref{https://doi.org/10.1134/S1063454120010112}
Linking options:
  • https://www.mathnet.ru/eng/vspua199
  • https://www.mathnet.ru/eng/vspua/v7/i1/p15
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025