|
|
Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 2025, Volume 12, Issue 2, Pages 256–268
(Mi vspua353)
|
|
|
|
MATHEMATICS
An example of complete alternance in multidimensional case
V. N. Malozemov, A. V. Plotkin St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
Abstract:
On a simplex in $n$-dimensional Euclidean space we define a function $H(x)$ with a value at the point $x = (x_1, . . . , x_n)$ equal to the harmonic mean of the numbers $x_1, . . . , x_n$. We consider a problem of uniform approximation of function $H(x)$ on a simplex with linear functions. We find the only solution to the problem. It has a complete alternance. The existence of complete alternance guarantees the strong uniqueness of the solution. We find an exact constant of strong uniqueness.
Keywords:
Chebyshev approximations, multidimensional alternance, strong uniqueness, constant of strong uniqueness.
Received: 14.06.2024 Revised: 14.11.2024 Accepted: 21.11.2024
Citation:
V. N. Malozemov, A. V. Plotkin, “An example of complete alternance in multidimensional case”, Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 12:2 (2025), 256–268
Linking options:
https://www.mathnet.ru/eng/vspua353 https://www.mathnet.ru/eng/vspua/v12/i2/p256
|
|