Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2013, Issue 1, Pages 22–36 (Mi vspui106)  

This article is cited in 1 scientific paper (total in 1 paper)

Applied mathematics

On one paradox in theorems about Newton's method

S. E. Mikheev

St. Petersburg State University, Faculty of Applied Mathematics and Control Processes
Full-text PDF (342 kB) Citations (1)
References:
Abstract: Mysovskikh' theorem about Newton method of solving a nonlinear equation in Banach space using an estimate of initial approximation error demands stronger restriction of some characteristic parameter than in Mysovskikh' theorem about simplified Newton method. As the latter method uses less information on each step than the basic one, i.e. a value of derivative on the regarded function in initial approach instead of the one in each current approach, two theorems form a paradox. It was not clear if it was a “nature of things” or the first theorem was not enough strong. It appeared in a scalar case that the restriction on the charateristic parameter sufficient for convergence can be weakened so that the paradox disappears. It is also shown that the new restriction cannot be weakened. The results are valid as for original assumption of the theorem and for its developed version where the maximum value of the second derivative of the considered function is replaced by Lipschitz' constant of the first derivative. Bibliogr. 3.
Keywords: iteration, iterative method, convergence, domain of convergence, convergence rate, Newton's method, spline.

Accepted: October 25, 2012
Document Type: Article
UDC: 519.853
Language: Russian
Citation: S. E. Mikheev, “On one paradox in theorems about Newton's method”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2013, no. 1, 22–36
Citation in format AMSBIB
\Bibitem{Mih13}
\by S.~E.~Mikheev
\paper On one paradox in theorems about Newton's method
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2013
\issue 1
\pages 22--36
\mathnet{http://mi.mathnet.ru/vspui106}
Linking options:
  • https://www.mathnet.ru/eng/vspui106
  • https://www.mathnet.ru/eng/vspui/y2013/i1/p22
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:350
    Full-text PDF :79
    References:81
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025